NAD+用藥指南相比於NAD+補充劑,直接補充NAD+更為直接(注射形式)。 NAD+早已作臨床藥用,國內主要有註射用輔酶I和復合輔酶(輔酶A+輔酶I),有意思是,複合輔酶的用法中有一條是“腫瘤病人要酌情加量”,這直接反駁了孤立地研究NAD+促癌的言論。
數據來源:CFDA網站
NAD+補充劑重要臨床任何臨床都需要有相應的適應症,目前世界上沒有一國家的藥品監管部門承認衰老是一種疾病,因此不會有關於NAD+治療衰老的臨床。最大的進步是2018年世界衛生組織在《國際疾病法典》中宣布,衰老是一種可以治療的疾病。所幸的是我們可以從其他相關研究中窺伺一二,1965年~1985年美國進行了一項名為“Coronary Drug Project”長達20年的臨床試驗,本來這個實驗是為了分析心肌梗死患者服用降脂藥是否會降低5年內死亡率,但採用了菸酸這種NAD+補充劑的雙盲試驗,可謂摟草打兔子。
在15年的臨床試驗中,1119人服用菸酸,2789人服用安慰劑,最後統計發現:實驗組比安慰劑組的全因死亡率低11%,換個說法是菸酸延長了11%的壽命;更細的結果是:實驗組比安慰劑組,心髒病和癌症的死亡率均降低,可以說是NAD+降低了癌症發生率。
數據來源:Fifteen Year Mortality in Coronary Drug Project Patients: Long-Term Benefit With Niacin
實驗組和安慰劑組的全因死亡率
NMN臨床披露的NMN臨床有4例,日本有3例NMN臨床試驗美國有1例。廣島大學最近公佈長期口服的NMN中期臨床試驗:NMN提升了Sirtuin1水平,有助於輔助癌症治療;慶應大學在結束了I期臨床的基礎上,於2017年開啟了II期臨床;美國華盛頓大學則於2017年開啟了針對的是對糖代謝的I期臨床。除了披露的臨床試驗據報導,Sinclair Metrobio study的NMN臨床已經結束了一期,在進行二期臨床。
數據來源:日本大學醫院信息網UMIN-CTR Clinical Trial和美國ClinicalTrials.go
NMN是在近幾年才廣受關注,動物實驗相對更多,將各個研究的動物實驗羅列如下。
數據來源:各個研究文獻,請查閱後文
NAD+補充劑臨床NAD+前體有長達60多年的安全用藥史,有數十項臨床到達III期、Ⅳ期,有的臨床實驗更是長達十幾年,安全性無需顧慮。煙酰胺、煙酰胺核糖、菸酸、色氨酸是四類較差的NAD+補充劑,以下表格了檢索了全球這四類NAD+補充劑的臨床試驗。其中煙酰胺和煙酰胺核糖有52項臨床(考慮到語言問題,可能有遺漏;考慮到關鍵詞,可能有重複),菸酸有52項臨床(考慮到語言問題,可能有遺漏),色氨酸有20項臨床(考慮到語言問題,可能有遺漏)。
參考文獻:
[1] Revollo, J.R., Korner, A., Mills, K.F., Satoh, A., Wang, T., Garten, A., Dasgupta, B., Sasaki, Y., Wolberger, C., Townsend, R.R., et al. (2007). Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 6, 363–375.
[2] Ramsey, K.M., Mills, K.F., Satoh, A., and Imai, S. (2008). Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell 7, 78–88.
[3] Yoshino, J., Mills, K.F., Yoon, M.J., and Imai, S. (2011). Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536.
[4] Caton, P.W., Kieswich, J., Yaqoob, M.M., Holness, M.J., and Sugden, M.C. (2011). Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function. Diabetologia 54, 3083–3092.
[5] Gomes, A.P., Price, N.L., Ling, A.J., Moslehi, J.J., Montgomery, M.K., Rajman, L., White, J.P., Teodoro, J.S., Wrann, C.D., Hubbard, B.P., et al. (2013). Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624–1638.
[6] Peek, C.B., Affinati, A.H., Ramsey, K.M., Kuo, H.Y., Yu, W., Sena, L.A., Ilkayeva, O., Marcheva, B., Kobayashi, Y., Omura, C., et al. (2013). Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342, 1243417.
[7] Karamanlidis, G., Lee, C.F., Garcia-Menendez, L., Kolwicz, S.C., Jr., Suthammarak, W., Gong, G., Sedensky, M.M., Morgan, P.G., Wang, W., and Tian, R.(2013). Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab. 18, 239–250.
[8] Choi, S.E., Fu, T., Seok, S., Kim, D.H., Yu, E., Lee, K.W., Kang, Y., Li, X., Kemper, B., and Kemper, J.K. (2013). Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging Cell 12, 1062–1072.
[9] Stein, L.R., and Imai, S. (2014). Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO J. 33, 1321–1340.
[10] Yamamoto, T., Byun, J., Zhai, P., Ikeda, Y., Oka, S., and Sadoshima, J. (2014). Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One 9, e98972.
[11] Picciotto N D , Gano L , Johnson L , et al. Nicotinamide mononucleotide supplementation reverses vascular endothelial dysfunction and large elastic artery stiffness in old mice (698.10)[J]. Faseb Journal, 2014.
[12] Long, A.N., Owens, K., Schlappal, A.E., Kristian, T., Fishman, P.S., and Schuh, R.A. (2015). Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurol. 15, 19.
[13] Yoon, M.J., Yoshida, M., Johnson, S., Takikawa, A., Usui, I., Tobe, K., Nakagawa, T., Yoshino, J., and Imai, S. (2015). SIRT1-mediated eNAMPT secretion from adipose tissue regulates hypothalamic NAD(+) and function in mice. Cell Metab. 21, 706–717.
[14] Zhao Y , Guan Y F , Zhou X M , et al. Regenerative Neurogenesis After Ischemic Stroke Promoted by Nicotinamide Phosphoribosyltransferase-Nicotinamide Adenine Dinucleotide Cascade.[J]. Stroke; a journal of cerebral circulation, 2015, 46(7):1966.
[15] Park, J.H., Long, A., Owens, K., and Kristian, T. (2016). Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiol. Dis. 95, 102–110.
[16] de Picciotto, N.E., Gano, L.B., Johnson, L.C., Martens, C.R., Sindler, A.L., Mills, K.F., Imai, S., and Seals, D.R. (2016). Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 15, 522–530.
[17] Lin, J.B., Kubota, S., Ban, N., Yoshida, M., Santeford, A., Sene, A., Nakamura, R., Zapata, N., Kubota, M., Tsubota, K., et al. (2016). NAMPT-mediated NAD(+) biosynthesis is essential for vision in mice. Cell Rep. 17, 69–85.
[18] Stromsdorfer, K.L., Yamaguchi, S., Yoon, M.J., Moseley, A.C., Franczyk, M.P., Kelly, S.C., Qi, N., Imai, S., and Yoshino, J. (2016). NAMPT-mediated NAD(+) biosynthesis in adipocytes regulates adipose tissue function and multi-organ insulin sensitivity in mice. Cell Rep. 16, 1851–1860.
[19] Lee, C.F., Chavez, J.D., Garcia-Menendez, L., Choi, Y., Roe, N.D., Chiao, Y.A., Edgar, J.S., Goo, Y.A., Goodlett, D.R., Bruce, J.E., et al. (2016). Normalization of NAD+ redox balance as a therapy for heart failure. Circulation 134, 883–894.
[20] Wang, X., Hu, X., Yang, Y., Takata, T., and Sakurai, T. (2016). Nicotinamide mononucleotide protects against beta-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res. 1643, 1–9.
[21] Mills KF, Yoshida S, Stein LR, Grozio A, Kubota S, Sasaki Y, Redpath P, Migaud ME, Apte RS, Uchida K, Yoshino J, Imai SI (2016) Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab 24:795–806
[22] Uddin, G. M. , Youngson, N. A. , Sinclair, D. A. , & Morris, M. J. . (2016). Head to head comparison of short-term treatment with the nad+ precursor nicotinamide mononucleotide (nmn) and 6 weeks of exercise in obese female mice. Frontiers in Pharmacology, 7.
[23] Yao, Z., Yang, W., Gao, Z., and Jia, P. (2017). Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neurosci. Lett. 647, 133–140.
[24] Wei, C.C., Kong, Y.Y., Li, G.Q., Guan, Y.F., Wang, P., and Miao, C.Y. (2017a). Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway. Sci. Rep. 7, 717.
[25] Li, J., Bonkowski, M.S., Moniot, S., Zhang, D., Hubbard, B.P., Ling, A.J., Rajman, L.A., Qin, B., Lou, Z., Gorbunova, V., et al. (2017). A conserved NAD+ binding pocket that regulates protein-protein interactions during aging. Science 355, 1312–1317.
[26] Guan, Y., Wang, S.R., Huang, X.Z., Xie, Q.H., Xu, Y.Y., Shang, D., and Hao, C.M. (2017). Nicotinamide mononucleotide, an NAD+ precursor, rescues age-associated susceptibility to AKI in a sirtuin 1-dependent manner. J. Am. Soc. Nephrol. 28, 2337–2352.
[27] Martin AS, Abraham DM, Hershberger KA, Bhatt DP, Mao L, Cui H, Liu J, Liu X, Muehlbauer MJ, Grimsrud PA, Locasale JW, Payne RM, Hirschey MD (2017) Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich’s ataxia cardiomyopathy model. JCI Insight 2:93885
[28] Wei, C.C., Kong, Y.Y., Xia, H., Li, G.Q., Zheng, S.L., Cheng, M.H., Wang, P., and Miao, C.Y. (2017b). NAD replenishment with nicotinamide mononucleotide protects blood-brain barrier integrity and attenuates delayed tPA-induced haemorrhagic transformation after cerebral ischemia. Br. J. Pharmacol. 174, 3823–3836.
[29] Zhang, R. , Shen, Y. , Zhou, L. , Sangwung, P. , Fujioka, H. , & Zhang, L. , et al. (2017). Short-term administration of nicotinamide mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure. Journal of Molecular and Cellular Cardiology, 112, 64-73.
[30] Uddin, G. M. , Youngson, N. A. , Doyle, B. M. , Sinclair, D. A. , & Morris, M. J. . (2017). Nicotinamide mononucleotide (nmn) supplementation ameliorates the impact of maternal obesity in mice: comparison with exercise. Scientific Reports, 7(1).
[31] Nadtochiy SM, Wang YT, Nehrke K, Munger J, Brookes PS (2018) Cardioprotection by nicotinamide mononucleotide (NMN): involvement of glycolysis and acidic pH. J Mol Cell Cardiol 121:155–162.